Ingenieurswese

Ingenieurswese

Erie -kanaal

Die Erie-kanaal is 'n waterweg van 363 myl wat die Groot Mere met die Atlantiese Oseaan verbind via die Hudsonrivier in die staat New York. Die kanaal, wat die staat New York van Albany na Buffalo aan die Erie -meer deurkruis, word as 'n ingenieurswonder beskou toe dit die eerste keer in ...lees meer

Waarom leun die skuins toring van Pisa?

Kies 'n dag in die Piazza del Duomo in die Italiaanse stad Pisa, en u sal ongetwyfeld 'n klomp toeriste sien wat op dieselfde foto poseer: hande uitgestrek na die opvallend gekantelde klokkentoring van die katedraal, asof hulle dit met hul krag ondersteun . Die ...lees meer

Die geheime van antieke Romeinse beton

Die geskiedenis bevat baie verwysings na antieke beton, insluitend in die geskrifte van die beroemde Romeinse geleerde Plinius die Ouere, wat in die 1ste eeu nC geleef het en gesterf het in die uitbarsting van die berg Vesuvius in 79 nC. Plinius het geskryf dat die beste maritieme beton gemaak is van vulkanies ...lees meer

St. Lawrence Seaway oopgemaak

In 'n seremonie onder voorsitterskap van die Amerikaanse president Dwight D. Eisenhower en koningin Elizabeth II, word die St. Lawrence Seaway amptelik geopen, wat 'n seevaart van die Atlantiese Oseaan na al die Groot Mere skep. Die seeweg bestaan ​​uit 'n stelsel van kanale, sluise en bagger ...lees meer

Akwaduk in Los Angeles

Sedert dit in die laat 18de eeu as 'n klein nedersetting gestig is, was Los Angeles afhanklik van sy eie rivier vir water, wat 'n stelsel van reservoirs en oop slote gebou het, asook kanale om nabygeleë velde te besproei. Namate die stad groei, het dit egter duidelik geword dat hierdie aanbod ...lees meer

George Waring

Nadat 'n geelkoors -epidemie in 1878 deur Memphis, Tennessee, gespoel het, het die nuutgeskepte National Board of Health die ingenieur en burgeroorlog -veteraan George A. Waring Jr. gestuur om 'n beter rioolafvoerstelsel vir die stad te ontwerp en te implementeer. Sy sukses daar het Waring's gemaak ...lees meer

Hooverdam

In die vroeë 20ste eeu het die Amerikaanse Buro vir Herwinning planne beraam vir 'n massiewe dam aan die grens tussen Arizona en Nevada om die Colorado-rivier te tem en water en hidro-elektriese krag aan die ontwikkelende Suidwes te verskaf. Konstruksie binne die streng tydsbestek was geweldig ...lees meer

Golden Gate -brug maak oop

Die Golden Gate -brug van San Francisco, 'n ongelooflike tegnologiese en artistieke prestasie, word na vyf jaar se konstruksie vir die publiek oopgemaak. Op die openingsdag-“Voetgangersdag”-was ongeveer 200 000 bruggangers verwonderd oor die 4 200 voet lange hangbrug, wat oor die Golden Gate strek ...lees meer

Aswan Hoë Dam voltooi

Na 11 jaar se bouwerk, word die Aswan -hoogdam oorkant die Nylrivier in Egipte op 21 Julie 1970 voltooi. Meer as twee myl lank op sy kruin het die massiewe dam van $ 1 miljard die kringloop van vloed en droogte in die Nylrivier -streek beëindig. , en uitgebuit 'n geweldige bron van ...lees meer

William Cobb demonstreer die eerste motor met sonkrag

Op 31 Augustus 1955 demonstreer William G. Cobb van die General Motors Corp. (GM) sy 15-duim lange "Sunmobile", die wêreld se eerste motor op sonkrag, by die General Motors Powerama-motorskou wat in Chicago, Illinois, gehou is. . Cobb se Sunmobile het die veld egter bekendgestel ...lees meer

Ralph Nader se "Unsafe at Any Speed" tref boekwinkels

Op 30 November 1965 publiseer die 32-jarige advokaat Ralph Nader die treffende boek Unsafe at Any Speed: The Designed-In Dangers of the American Automobile. Die boek het dadelik 'n topverkoper geword. Dit het ook daartoe gelei dat die nasionale wet op verkeer en motorvoertuie goedgekeur is ...lees meer

Driepunt veiligheidsgordel uitvinder Nils Bohlin gebore

Nils Bohlin, die Sweedse ingenieur en uitvinder verantwoordelik vir die driepunt skoot- en skouergordel-beskou as een van die belangrikste innovasies in motorveiligheid-word op 17 Julie 1920 in Härnösand, Swede, gebore. Voor 1959 was slegs twee-punt skootgordels beskikbaar ...lees meer

Man van Pennsylvania begrawe saam met sy geliefde Corvette

Op 25 Mei 1994 word die as van die 71-jarige George Swanson begrawe (volgens Swanson se versoek) in die bestuurdersitplek van sy wit Corvette uit 1984 in Irwin, Pennsylvania. Swanson, 'n bierverspreider en voormalige sersant van die Amerikaanse weermag tydens die Tweede Wêreldoorlog, is op 31 Maart oorlede ...lees meer

Panamakanaal het oorgegaan na Panama

Op 31 Desember 1999 gee die Verenigde State, in ooreenstemming met die Torrijos-Carter-verdragte, amptelik die beheer oor die Panamakanaal oor en plaas die strategiese waterweg vir die eerste keer in Panamese hande. Menigte Panamese het die oordrag van die 50 myl gevier ...lees meer

Louis's Gateway Arch is voltooi

Op 28 Oktober 1965 word die bouwerk voltooi aan die Gateway Arch, 'n skouspelagtige parabool van 630 voet hoog van vlekvrye staal wat die Jefferson National Expansion Memorial aan die waterfront van St. Louis, Missouri, aandui. The Gateway Arch, ontwerp deur in Finland gebore, Amerikaans opgeleide ...lees meer

Engelse Kanaaltunnel maak oop

In 'n seremonie onder leiding van die Engelse koningin Elizabeth II en die Franse president Francois Mitterrand, is 'n spoortunnel onder die Engelse kanaal amptelik geopen, wat Brittanje en die Europese vasteland vir die eerste keer sedert die ystydperk verbind het. Die Kanaaltunnel, of ...lees meer

Chunnel maak 'n deurbraak

Kort na 11:00 op 1 Desember 1990, 132 voet onder die Engelse Kanaal, boor werkers 'n opening van 'n motor deur 'n klipmuur. Dit was geen gewone gat nie - dit verbind die twee ente van 'n onderwatertunnel wat Groot -Brittanje met die Europese vasteland verbind ...lees meer

Die bou van die Hooverdam begin

Op 7 Julie 1930 begin die bou van die Hooverdam. In die komende vyf jaar sal altesaam 21 000 mans onophoudelik werk om die grootste dam van sy tyd te produseer, asook een van die grootste mensgemaakte strukture ter wêreld. Alhoewel die dam slegs sou vat ...lees meer

Brooklyn Bridge maak oop

Na 14 jaar maak die Brooklyn -brug oor die East River oop, wat die groot stede New York en Brooklyn vir die eerste keer in die geskiedenis verbind. Duisende inwoners van Brooklyn en Manhattan Island was getuie van die toewydingseremonie, onder leiding van ...lees meer

Tacoma Narrows Bridge stort in duie

Die Tacoma Narrows -brug stort in duie as gevolg van sterk wind op 7 November 1940. Die Tacoma Narrows -brug is gedurende die dertigerjare in Washington gebou en op 1 Julie 1940 vir verkeer oopgemaak. Dit strek oor die Puget Sound van Gig Harbor na Tacoma, wat 40 is. myl suid van Seattle. Die ...lees meer

Dam gee pad in Georgië

Op 6 November 1977 gee die Toccoa Falls -dam in Georgië plek en 39 mense sterf in die gevolglike vloed. Negentig myl noord van Atlanta is die Toccoa (Cherokee vir "pragtige") waterval in 1887 van 'n aarde gebou oor 'n canyon, wat 'n meer van 55 hektaar 180 voet bo die ...lees meer


Inhoud

Die kreatiewe toepassing van wetenskaplike beginsels vir die ontwerp of ontwikkeling van strukture, masjiene, toestelle of vervaardigingsprosesse, of werke wat dit afsonderlik of in kombinasie gebruik of om dit te bou of te gebruik met die volle kennis van hul ontwerp of om hul gedrag te voorspel onder spesifieke omstandighede alles ten opsigte van 'n beoogde funksie, bedryfsekonomie en veiligheid vir lewens en eiendom. [4] [5]

Ingenieurswese bestaan ​​sedert antieke tye, toe mense uitvindings bedink het soos die wig, hefboom, wiel en katrol, ens.

Die term ingenieurswese is afgelei van die woord ingenieur, wat self dateer uit die 14de eeu toe 'n ingenieur (letterlik, iemand wat 'n beleg enjin) verwys na "'n bouer van militêre enjins." [6] In hierdie konteks, nou verouderd, verwys 'n 'enjin' na 'n militêre masjien, m.a.w., 'n meganiese uitrusting wat in oorlog gebruik word (byvoorbeeld 'n katapult). Bekende voorbeelde van die verouderde gebruik wat tot vandag toe oorleef het, is militêre ingenieurswese korps, bv., die Amerikaanse weermagkorps van ingenieurs.

Die woord "enjin" self is van nog ouer oorsprong, wat uiteindelik afkomstig is van die Latyn ingenium (ongeveer 1250), wat beteken "aangebore kwaliteit, veral geestelike krag, vandaar 'n slim uitvinding." [7]

Namate die ontwerp van burgerlike strukture, soos brûe en geboue, later as 'n tegniese dissipline ontwikkel het, het die term siviele ingenieurswese [5] die leksikon betree as 'n manier om te onderskei tussen diegene wat spesialiseer in die bou van sulke nie-militêre projekte en dié betrokke by die dissipline van militêre ingenieurswese.

Antieke era

Die piramides in antieke Egipte, ziggurate van Mesopotamië, die Akropolis en Parthenon in Griekeland, die Romeinse akwadukte, Via Appia en Colosseum, Teotihuacán en die Brihadeeswarar -tempel van Thanjavur, onder meer, bewys dat die vindingrykheid en vaardigheid van die ou tyd burgerlike en militêre ingenieurs. Ander monumente wat nie meer bestaan ​​het nie, soos die hangende tuine van Babilon en die Pharos van Alexandrië, was belangrike ingenieursprestasies van hul tyd en is beskou as een van die sewe wonders van die antieke wêreld.

Die ses klassieke eenvoudige masjiene was bekend in die ou Nabye Ooste. Die wig en die skuinsvlak (oprit) was sedert die prehistoriese tyd bekend. [8] Die wiel, saam met die wiel- en asmeganisme, is uitgevind in Mesopotamië (moderne Irak) gedurende die 5de millennium vC. [9] Die hefboommeganisme het ongeveer 5000 jaar gelede die eerste keer in die Nabye Ooste verskyn, waar dit op 'n eenvoudige weegskaal gebruik is [10] en om groot voorwerpe in antieke Egiptiese tegnologie te beweeg. [11] Die hefboom is ook gebruik in die waterheffingstoestel, die eerste kraanmasjien, wat in Mesopotamië omstreeks 3000 vC verskyn het, [10] en daarna in antieke Egiptiese tegnologie omstreeks 2000 vC. [12] Die vroegste bewyse van katrolle dateer uit Mesopotamië in die vroeë 2de millennium vC, [13] en antieke Egipte tydens die twaalfde dinastie (1991-1802 vC). [14] Die skroef, die laaste van die eenvoudige masjiene wat uitgevind is, [15] verskyn die eerste keer in Mesopotamië gedurende die Neo-Assiriese tydperk (911-609) vC. [13] Die Egiptiese piramides is gebou met drie van die ses eenvoudige masjiene, die skuins vlak, die wig en die hefboom, om strukture soos die Groot Piramide van Giza te skep. [16]

Die vroegste siviele ingenieur wat by die naam bekend is, is Imhotep. [5] As een van die amptenare van die farao, Djosèr, het hy waarskynlik ontwerp en toesig gehou oor die bou van die Piramide van Djoser (die stappiramide) by Saqqara in Egipte omstreeks 2630–2611 vC. [17] Die vroegste praktiese wateraangedrewe masjiene, die waterwiel en watermeul, verskyn eers in die Persiese Ryk, in die huidige Irak en Iran, teen die vroeë 4de eeu v.C. [18]

Kush ontwikkel die Sakia gedurende die 4de eeu vC, wat staatgemaak het op dierlike krag in plaas van menslike energie. [19] Hafirs is ontwikkel as 'n tipe reservoir in Kush om water op te slaan en te bevat, asook om besproeiing te versterk. [20] Sappers is tydens militêre veldtogte gebruik om paaie te bou. [21] Kushitiese voorouers het tydens die Bronstydperk tussen 3700 en 3250 vC speos gebou. [22] Bloomeries en hoogoonde is ook gedurende die 7de eeu vC in Kush geskep. [23] [24] [25] [26]

Antieke Griekeland het masjiene ontwikkel in beide burgerlike en militêre gebiede. Die Antikythera -meganisme, 'n vroeë bekende meganiese analoog rekenaar, [27] [28] en die meganiese uitvindings van Archimedes, is voorbeelde van Griekse meganiese ingenieurswese. Sommige van die uitvindings van Archimedes sowel as die Antikythera -meganisme het gesofistikeerde kennis van differensiële versnelling of episikliese ratkas vereis, twee belangrike beginsels in masjienteorie wat gehelp het om die ratte van die Industriële Revolusie te ontwerp, en word vandag nog steeds wyd gebruik op verskillende terreine soos robotika en motoringenieurswese. [29]

Ou Chinese, Griekse, Romeinse en Hunniese leërs het militêre masjiene en uitvindings gebruik, soos artillerie wat deur die Grieke ontwikkel is rondom die 4de eeu vC, [30] die trireme, die ballista en die katapult. In die Middeleeue is die trebuchet ontwikkel.

Middeleeue

Die vroegste praktiese windaangedrewe masjiene, die windpomp en windpomp, het die eerste keer in die Moslemwêreld verskyn tydens die Islamitiese Goue Eeu, in die huidige Iran, Afghanistan en Pakistan, teen die 9de eeu nC. [31] [32] [33] [34] Die vroegste praktiese stoom-aangedrewe masjien was 'n stoomkrag wat deur 'n stoomturbine aangedryf is, beskryf in 1551 deur Taqi al-Din Muhammad ibn Ma'ruf in Ottomaanse Egipte. [35] [36]

Die katoen -jenewer is in die 6de eeu nC in Indië uitgevind, [37] en die draaiende wiel is in die Islamitiese wêreld uitgevind teen die vroeë 11de eeu, [38] wat albei fundamenteel was vir die groei van die katoenbedryf. Die draaiwiel was ook 'n voorloper van die draaiende jenny, wat 'n belangrike ontwikkeling was tydens die vroeë industriële revolusie in die 18de eeu. [39] Die krukas en nokas is uitgevind deur Al-Jazari in Noord-Mesopotamië, omstreeks 1206, [40] [41] [42] en dit het later sentraal geword in moderne masjinerie soos die stoomenjin, verbrandingsmotor en outomatiese kontroles. [43]

Die vroegste programmeerbare masjiene is in die Moslem -wêreld ontwikkel. 'N Musiekopvolger, 'n programmeerbare musiekinstrument, was die vroegste tipe programmeerbare masjien. Die eerste musiekopvolger was 'n outomatiese fluitspeler wat deur die broers Banu Musa uitgevind is, beskryf in hulle Boek van vernuftige toestelle, in die 9de eeu. [44] [45] In 1206 het Al-Jazari programmeerbare outomate/robotte uitgevind. Hy beskryf vier outomaatmusikante, waaronder tromspelers wat deur 'n programmeerbare dromasjien bestuur word, waar hulle verskillende ritmes en verskillende trompatrone kan speel. [46] Die kasteelklok, 'n meganiese astronomiese klok wat met water aangedryf is, uitgevind deur Al-Jazari, was die eerste programmeerbare analoog rekenaar. [47] [48] [49]

Voor die ontwikkeling van moderne ingenieurswese is wiskunde gebruik deur vakmanne en vakmanne, soos meulwerkers, klokmakers, instrumentmakers en landmeters. Afgesien van hierdie beroepe, word geglo dat universiteite nie veel praktiese betekenis vir tegnologie gehad het nie. [50]: 32

'N Standaardverwysing na die stand van die meganiese kunste tydens die Renaissance word gegee in die mynbou -ingenieursverhandeling De re metallica (1556), wat ook afdelings oor geologie, mynbou en chemie bevat. De re metallica was die standaard chemiese verwysing vir die volgende 180 jaar. [50]

Moderne era

Die wetenskap van klassieke meganika, soms Newtoniaanse meganika genoem, vorm die wetenskaplike basis van baie moderne ingenieurswese. [50] Met die opkoms van die ingenieurswese as 'n beroep in die 18de eeu, het die term nouer toegepas op gebiede waarin wiskunde en wetenskap in hierdie opsigte toegepas is. Benewens militêre en siviele ingenieurswese, het die velde wat destyds bekend was as die werktuigkundige kunste, ook ingelyf in die ingenieurswese.

Kanaalbou was 'n belangrike ingenieurswerk tydens die vroeë fases van die Industriële Revolusie. [51]

John Smeaton was die eerste selfverklaarde siviele ingenieur en word dikwels beskou as die 'vader' van siviele ingenieurswese. Hy was 'n Engelse siviele ingenieur wat verantwoordelik was vir die ontwerp van brûe, kanale, hawens en vuurtorings. Hy was ook 'n bekwame meganiese ingenieur en 'n vooraanstaande fisikus. Met 'n modelwaterwiel het Smeaton sewe jaar lank eksperimente uitgevoer om maniere te bepaal om doeltreffendheid te verhoog. [52]: 127 Smeaton het ysterasse en ratte aan waterwiele bekendgestel. [50]: 69 Smeaton het ook meganiese verbeterings aan die Newcomen -stoommasjien aangebring. Smeaton het die derde Eddystone -vuurtoring (1755–59) ontwerp waar hy 'n pionier was in die gebruik van 'hidrouliese kalk' ('n vorm van mortel wat onder water gaan sit) en 'n tegniek ontwikkel het waarin swaelstertblokke van graniet by die vuurtoring gebou is. Hy is belangrik in die geskiedenis, herontdekking en ontwikkeling van moderne sement, omdat hy die samestellingsvereistes geïdentifiseer het wat nodig is om "hidrolisiteit" in kalkwerk te verkry, wat uiteindelik tot die uitvinding van Portland -sement gelei het.

Toegepaste wetenskap lei tot die ontwikkeling van die stoomenjin. Die volgorde van gebeure begin met die uitvinding van die barometer en die meting van atmosferiese druk deur Evangelista Torricelli in 1643, demonstrasie van die atmosferiese druk deur Otto von Guericke met behulp van die Magdeburg -hemisfere in 1656, laboratoriumeksperimente deur Denis Papin, wat 'n eksperimentele model gebou het stoommasjiene en toon die gebruik van 'n suier aan wat hy in 1707 gepubliseer het. Edward Somerset, 2de markies van Worcester, het 'n boek van 100 uitvindings gepubliseer wat 'n metode bevat om water op te lig, soortgelyk aan 'n koffiedrukker. Samuel Morland, 'n wiskundige en uitvinder wat aan pompe gewerk het, het aantekeninge by die Vauxhall Ordinance Office gelaat oor 'n stoompompontwerp wat Thomas Savery gelees het. In 1698 bou Savery 'n stoompomp genaamd "The Miner's Friend". Dit het vakuum sowel as druk gebruik. [53] Ysterhandelaar Thomas Newcomen, wat die eerste kommersiële suierstoommotor in 1712 gebou het, het geen wetenskaplike opleiding gehad nie. [52]: 32

Die toepassing van stoom-aangedrewe gietysterblaascilinders vir die verskaffing van druklug vir hoogoonde lei tot 'n groot toename in ysterproduksie aan die einde van die 18de eeu. Die hoër oondtemperature wat moontlik gemaak is met stoom-aangedrewe ontploffing, het meer kalk in hoogoonde moontlik gemaak, wat die oorgang van houtskool na coke moontlik gemaak het. [54] Hierdie innovasies het die koste van yster verlaag, wat perdspoorweë en ysterbrue prakties gemaak het. Die plasproses, wat in 1784 deur Henry Cort gepatenteer is, het groot hoeveelhede smeedyster opgelewer. Warm ontploffing, gepatenteer deur James Beaumont Neilson in 1828, het die hoeveelheid brandstof wat nodig is om yster te ruik, aansienlik verlaag. Met die ontwikkeling van die hoëdruk stoomenjin het die krag -gewigverhouding van stoomenjins praktiese stoombote en lokomotiewe moontlik gemaak. [55] Nuwe staalprosesse, soos die Bessemer -proses en die oop vuurherd, het aan die einde van die 19de eeu 'n gebied van swaar ingenieurswese ingelui.

Een van die bekendste ingenieurs van die middel van die 19de eeu was Isambard Kingdom Brunel, wat spoorweë, hawe en stoomskepe gebou het.

Die Industriële Revolusie het 'n vraag na masjinerie met metaalonderdele veroorsaak, wat gelei het tot die ontwikkeling van verskeie masjiengereedskap. Om gietyster -silinders met presisie te verveel, was eers moontlik toe John Wilkinson sy vervelige masjien uitgevind het, wat beskou word as die eerste masjiengereedskap. [56] Ander werktuiggereedskap sluit in die skroefknipdraaibank, freesmasjien, rewolwer en draaibank. In die eerste helfte van die 19de eeu is presiese bewerkingstegnieke ontwikkel. Dit sluit in die gebruik van optredes om die bewerkingsgereedskap oor die werk te lei en toebehore om die werk in die regte posisie te hou. Masjiengereedskap en bewerkingstegnieke wat verwisselbare onderdele kan produseer, lei tot grootskaalse fabriekproduksie teen die laat 19de eeu. [57]

Die Amerikaanse sensus van 1850 noem die beroep van 'ingenieur' vir die eerste keer met 'n telling van 2 000. [58] Daar was minder as 50 ingenieurs -gegradueerdes in die VSA voor 1865. In 1870 was daar 'n dosyn Amerikaanse gegradueerdes in meganiese ingenieurswese, met die getal in 1875 tot 43 per jaar. In 1890 was daar 6 000 ingenieurs in siviele mynbou, meganies en elektries. [59]

Daar was tot 1875 nog geen voorsitter van toegepaste meganisme en toegepaste meganika in Cambridge nie, en geen voorsitter van ingenieurswese in Oxford tot 1907. Duitsland het vroeër tegniese universiteite gestig. [60]

Die grondslae van elektriese ingenieurswese in die 1800's sluit in die eksperimente van Alessandro Volta, Michael Faraday, Georg Ohm en ander en die uitvinding van die elektriese telegraaf in 1816 en die elektriese motor in 1872. Die teoretiese werk van James Maxwell (sien: Maxwell se vergelykings) en Heinrich Hertz aan die einde van die 19de eeu aanleiding gegee het tot die gebied van elektronika. Die latere uitvindings van die vakuumbuis en die transistor het die ontwikkeling van elektronika verder versnel tot so 'n mate dat elektriese en elektroniese ingenieurs tans meer as hul kollegas van enige ander ingenieurs spesialiteit is. [5] Chemiese ingenieurswese ontwikkel in die laat negentiende eeu. [5] Vervaardiging op industriële skaal het nuwe materiale en nuwe prosesse geëis, en teen 1880 was die behoefte aan grootskaalse produksie van chemikalieë so groot dat 'n nuwe industrie geskep is wat toegewy is aan die ontwikkeling en grootskaalse vervaardiging van chemikalieë in nuwe nywerheidsaanlegte. [5] Die rol van die chemiese ingenieur was die ontwerp van hierdie chemiese aanlegte en prosesse. [5]

Lugvaartingenieurswese handel oor ontwerp van vliegtuigontwerpproses, terwyl lugvaart -ingenieurswese 'n meer moderne term is wat die reikwydte van die dissipline uitbrei deur ruimtetuigontwerp in te sluit. Die oorsprong daarvan kan teruggevoer word na die lugvaartpioniers rondom die begin van die 20ste eeu, hoewel die werk van Sir George Cayley onlangs uit die laaste dekade van die 18de eeu dateer is. Vroeë kennis van lugvaartingenieurswese was grootliks empiries, met 'n paar konsepte en vaardighede wat uit ander takke van ingenieurswese ingevoer is. [61]

Die eerste PhD in ingenieurswese (tegnies, toegepaste wetenskap en ingenieurswese) wat in die Verenigde State toegeken is, is in 1863 aan Josiah Willard Gibbs aan die Yale University toegeken, dit was ook die tweede PhD in wetenskap in die VSA [62]

Slegs 'n dekade na die suksesvolle vlugte deur die Wright -broers, was daar 'n uitgebreide ontwikkeling van lugvaartingenieurswese deur die ontwikkeling van militêre vliegtuie wat in die Eerste Wêreldoorlog gebruik is. Intussen is navorsing oor fundamentele agtergrondwetenskap voortgesit deur teoretiese fisika met eksperimente te kombineer.

Ingenieurswese is 'n breë dissipline wat dikwels in verskillende subdissiplines verdeel is. Alhoewel 'n ingenieur gewoonlik in 'n spesifieke dissipline opgelei word, kan hy of sy deur middel van ervaring multi-gedissiplineerd raak. Ingenieurswese word dikwels gekenmerk deur vier hoofvertakkings: [63] [64] [65] chemiese ingenieurswese, siviele ingenieurswese, elektriese ingenieurswese en meganiese ingenieurswese.

Chemiese ingenieurswese

Chemiese ingenieurswese is die toepassing van fisika, chemie, biologie en ingenieursbeginsels om chemiese prosesse op kommersiële skaal uit te voer, soos die vervaardiging van handelschemikalieë, spesiale chemikalieë, petroleumraffinering, mikrofabrikasie, fermentasie en produksie van biomolekules.

Siviele ingenieurswese

Siviele ingenieurswese is die ontwerp en konstruksie van openbare en private werke, soos infrastruktuur (lughawens, paaie, spoorweë, watervoorsiening en behandeling ens.), Brûe, tonnels, damme en geboue. [66] [67] Siviele ingenieurswese is tradisioneel ingedeel in 'n aantal subdissiplines, waaronder strukturele ingenieurswese, omgewingsingenieurswese en landmeting. Dit word tradisioneel beskou as los van militêre ingenieurswese. [68]

Elektriese ingeneurswese

Meganiese ingenieurswese

Meganiese ingenieurswese is die ontwerp en vervaardiging van fisiese of meganiese stelsels, soos krag- en energiestelsels, lugvaart-/vliegtuigprodukte, wapenstelsels, vervoerprodukte, enjins, kompressors, dryfbane, kinematiese kettings, vakuumtegnologie, vibrasie -isolasie toerusting, vervaardiging, robotika , turbines, klanktoerusting en megatronika.

Nuwe spesialiteite kombineer soms met die tradisionele velde en vorm nuwe takke - byvoorbeeld, aardstelselingenieurswese en -bestuur behels byvoorbeeld 'n wye verskeidenheid vakgebiede, insluitend ingenieurswese, omgewingswetenskap, ingenieursetiek en ingenieursfilosofie.

Ruimte -ingenieurswese

Ruimte -ingenieurswese bestudeer ontwerp, vervaardiging van vliegtuie, satelliete, vuurpyle, helikopters, ensovoorts. Dit bestudeer die drukverskil en aerodinamika van 'n voertuig noukeurig om veiligheid en doeltreffendheid te verseker. Aangesien die meeste studies verband hou met vloeistowwe, word dit toegepas op enige voertuig, soos motors.

Mariene ingenieurswese

Mariene ingenieurswese hou verband met enigiets op of naby die see. Voorbeelde is, maar nie beperk nie tot, skepe, duikbote, oliebore, strukture, watervaartuigdrywing, ontwerp en ontwikkeling aan boord, aanlegte, hawens, ensovoorts. Dit verg 'n gekombineerde kennis in meganiese ingenieurswese, elektriese ingenieurswese, siviele ingenieurswese en 'n paar programmeervaardighede.

Rekenaaringenieurswese

Rekenaaringenieurswese (CE) is 'n tak van ingenieurswese wat verskeie velde van rekenaarwetenskap en elektroniese ingenieurswese integreer wat nodig is om rekenaarhardeware en sagteware te ontwikkel. Rekenaaringenieurs het gewoonlik opleiding in elektroniese ingenieurswese (of elektriese ingenieurswese), sagteware-ontwerp en hardeware-sagteware-integrasie in plaas van slegs sagteware-ingenieurswese of elektroniese ingenieurswese.

Iemand wat ingenieurswese beoefen, word 'n ingenieur genoem, en diegene wat hiervoor gelisensieer is, kan meer formele benamings hê, soos professionele ingenieur, geoktrooieerde ingenieur, ingelyfde ingenieur, ingenieur, Europese ingenieur of aangewese ingenieurverteenwoordiger.

In die ingenieursontwerpproses pas ingenieurs wiskunde en wetenskappe soos fisika toe om nuwe oplossings vir probleme te vind of om bestaande oplossings te verbeter. Ingenieurs benodig vaardige kennis van relevante wetenskappe vir hul ontwerpprojekte. As gevolg hiervan leer baie ingenieurs steeds nuwe materiaal deur hul loopbaan.

As daar verskeie oplossings bestaan, weeg ingenieurs elke ontwerpkeuse op grond van hul verdienste en kies die oplossing wat die beste by die vereistes pas. Die taak van die ingenieur is om die beperkings op 'n ontwerp te identifiseer, te verstaan ​​en te interpreteer om 'n suksesvolle resultaat te lewer. Dit is oor die algemeen onvoldoende om 'n tegnies suksesvolle produk te bou, maar moet ook aan verdere vereistes voldoen.

Beperkings kan beskikbare hulpbronne insluit, fisiese, verbeeldingryke of tegniese beperkings, buigsaamheid vir toekomstige wysigings en toevoegings, en ander faktore, soos vereistes vir koste, veiligheid, bemarkbaarheid, produktiwiteit en diensbaarheid. Deur die beperkings te verstaan, stel ingenieurs spesifikasies op vir die perke waarbinne 'n lewensvatbare voorwerp of stelsel vervaardig en bedryf kan word.

Probleemoplossing

Ingenieurs gebruik hul kennis van wetenskap, wiskunde, logika, ekonomie en gepaste ervaring of stilswyende kennis om geskikte oplossings vir 'n probleem te vind. Deur 'n geskikte wiskundige model van 'n probleem te skep, kan hulle dit dikwels (soms definitief) ontleed en moontlike oplossings toets. [72]

Gewoonlik bestaan ​​daar verskeie redelike oplossings, sodat ingenieurs die verskillende ontwerpkeuses op hul meriete moet evalueer en die oplossing moet kies wat die beste aan hul vereistes voldoen. Genrich Altshuller, nadat hy statistieke oor 'n groot aantal patente versamel het, het voorgestel dat kompromieë die kern vorm van 'lae-vlak' ingenieursontwerpe, terwyl die beste ontwerp op 'n hoër vlak die kern-teenstrydigheid wat die probleem veroorsaak, uitskakel. [73]

Ingenieurs probeer gewoonlik voorspel hoe goed hul ontwerpe volgens hul spesifikasies sal presteer voor produksie op groot skaal. Hulle gebruik onder meer: ​​prototipes, skaalmodelle, simulasies, vernietigende toetse, nie -vernietigende toetse en stres toetse. Toetse verseker dat produkte soos verwag sal presteer. [74]

Ingenieurs neem die verantwoordelikheid om ontwerpe te vervaardig wat so goed soos verwag sal presteer en nie die publiek in die algemeen onbedoeld sal benadeel nie. Ingenieurs bevat gewoonlik 'n veiligheidsfaktor in hul ontwerpe om die risiko van onverwagte mislukking te verminder.

Die studie van mislukte produkte staan ​​bekend as forensiese ingenieurswese en kan die produkontwerper help om sy of haar ontwerp in die lig van werklike omstandighede te evalueer. Die dissipline is van groot waarde na rampe, soos ineenstorting van brug, wanneer noukeurige ontleding nodig is om die oorsaak of oorsake van die mislukking vas te stel. [75]

Rekenaargebruik

Soos met alle moderne wetenskaplike en tegnologiese pogings, speel rekenaars en sagteware 'n toenemend belangrike rol. Benewens die tipiese saketoepassingsagteware, is daar 'n aantal rekenaargesteunde toepassings (rekenaargesteunde tegnologieë) spesifiek vir ingenieurswese. Rekenaars kan gebruik word om modelle van fundamentele fisiese prosesse te genereer, wat met numeriese metodes opgelos kan word.

Een van die mees gebruikte ontwerphulpmiddels in die beroep is rekenaargesteunde ontwerp (CAD) sagteware. Dit stel ingenieurs in staat om 3D -modelle, 2D -tekeninge en skemas van hul ontwerpe te skep. CAD, tesame met digitale mockup (DMU) en CAE-sagteware, soos 'n eindige elementmetode-analise of 'n analitiese elementmetode, stel ingenieurs in staat om modelle te ontwerpe wat ontleed kan word sonder om duur en tydrowende fisiese prototipes te hoef te maak.

Hiermee kan produkte en komponente nagegaan word vir gebreke om die geskiktheid en monteerstudie -ergonomie te kontroleer en om statiese en dinamiese eienskappe van stelsels soos spanning, temperature, elektromagnetiese emissies, elektriese strome en spannings, digitale logiese vlakke, vloeistofstrome en kinematika te ontleed. Toegang en verspreiding van al hierdie inligting word gewoonlik georganiseer met die gebruik van sagteware vir die bestuur van produkdata. [76]

Daar is ook baie gereedskap om spesifieke ingenieurstake te ondersteun, soos rekenaargesteunde sagteware (CAM) om CNC-bewerkingsinstruksies op te stel, vervaardigingsprosesbestuursprogrammatuur vir produksie-ingenieurswese EDA vir printplaat (PCB) en stroombaanskemas vir elektroniese ingenieurs MRO-toepassings vir onderhoud bestuur en argitektuur, ingenieurswese en konstruksie (AEC) sagteware vir siviele ingenieurswese.

In die afgelope jaar staan ​​die gebruik van rekenaarsagteware vir die ontwikkeling van goedere gesamentlik bekend as produklewensiklusbestuur (PLM). [77]

Die ingenieursberoep is betrokke by 'n wye verskeidenheid aktiwiteite, van groot samewerking op maatskaplike vlak, en ook van kleiner individuele projekte. Byna alle ingenieursprojekte is verplig tot 'n soort finansieringsagentskap: 'n onderneming, 'n stel beleggers of 'n regering. Die paar tipes ingenieurswese wat deur sulke probleme minimaal beperk word, is Pro bono ingenieurswese en oop ontwerpingenieurswese.

Ingenieurswese het van nature 'n verband met die samelewing, kultuur en menslike gedrag. Elke produk of konstruksie wat deur die moderne samelewing gebruik word, word beïnvloed deur ingenieurswese. Die resultate van ingenieursaktiwiteite beïnvloed veranderinge in die omgewing, die samelewing en die ekonomie, en die toepassing daarvan bring verantwoordelikheid en openbare veiligheid mee.

Ingenieurswese kan aan kontroversie onderwerp word. Voorbeelde uit verskillende ingenieursdissiplines sluit in die ontwikkeling van kernwapens, die Three Gorges Dam, die ontwerp en gebruik van sportnutsvoertuie en die ontginning van olie. In reaksie hierop het sommige westerse ingenieursondernemings ernstige beleide vir korporatiewe en sosiale verantwoordelikheid uitgevaardig.

Ingenieurswese is 'n belangrike dryfveer vir innovasie en menslike ontwikkeling. Veral Afrika suid van die Sahara het 'n baie klein ingenieursvermoë, wat daartoe lei dat baie Afrika-lande nie noodsaaklike infrastruktuur kan ontwikkel sonder hulp van buite nie. [ aanhaling nodig ] Die bereiking van baie van die millenniumontwikkelingsdoelwitte vereis die bereiking van voldoende ingenieursvermoë om infrastruktuur en volhoubare tegnologiese ontwikkeling te ontwikkel. [78]

Alle buitelandse ontwikkelings- en hulpverleningsorganisasies maak aansienlik gebruik van ingenieurs om oplossings toe te pas in ramp- en ontwikkelingscenario's. 'N Aantal liefdadigheidsorganisasies is daarop gemik om ingenieurswese direk te gebruik vir die voordeel van die mensdom:

Ingenieursondernemings in baie gevestigde ekonomieë staan ​​voor groot uitdagings met betrekking tot die aantal professionele ingenieurs wat opgelei word, in vergelyking met die aantal wat aftree. This problem is very prominent in the UK where engineering has a poor image and low status. [80] There are many negative economic and political issues that this can cause, as well as ethical issues. [81] It is widely agreed that the engineering profession faces an "image crisis", [82] rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and other western economies. Still, the UK holds most engineering companies compared to other European countries, together with the United States.

Code of ethics

Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The National Society of Professional Engineers code of ethics states:

Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct. [83]

In Canada, many engineers wear the Iron Ring as a symbol and reminder of the obligations and ethics associated with their profession. [84]

Wetenskap

Scientists study the world as it is engineers create the world that has never been.

There exists an overlap between the sciences and engineering practice in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations. [ aanhaling nodig ]

Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely "engineering scientists". [ aanhaling nodig ]

In die boek What Engineers Know and How They Know It, [88] Walter Vincenti asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner.

There is a "real and important" difference between engineering and physics as similar to any science field has to do with technology. [89] [90] Physics is an exploratory science that seeks knowledge of principles while engineering uses knowledge for practical applications of principles. The former equates an understanding into a mathematical principle while the latter measures variables involved and creates technology. [91] [92] [93] For technology, physics is an auxiliary and in a way technology is considered as applied physics. [94] Though physics and engineering are interrelated, it does not mean that a physicist is trained to do an engineer's job. A physicist would typically require additional and relevant training. [95] Physicists and engineers engage in different lines of work. [96] But PhD physicists who specialize in sectors of engineering physics and applied physics are titled as Technology officer, R&D Engineers and System Engineers. [97]

An example of this is the use of numerical approximations to the Navier–Stokes equations to describe aerodynamic flow over an aircraft, or the use of the Finite element method to calculate the stresses in complex components. Second, engineering research employs many semi-empirical methods that are foreign to pure scientific research, one example being the method of parameter variation. [ aanhaling nodig ]

As stated by Fung et al. in the revision to the classic engineering text Foundations of Solid Mechanics:

Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry, biology and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born. [98]

Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution. [99]

Medicine and biology

The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the human body, if necessary, through the use of technology.

Modern medicine can replace several of the body's functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers. [100] [101] The fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems.

Conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing biology with technology. This has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine. [102] [103]

Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both.

Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods. [104]

The heart for example functions much like a pump, [105] the skeleton is like a linked structure with levers, [106] the brain produces electrical signals etc. [107] These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines.

Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems. [104]

There are connections between engineering and art, for example, architecture, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university's Faculty of Engineering). [109] [110] [111]

The Art Institute of Chicago, for instance, held an exhibition about the art of NASA's aerospace design. [112] Robert Maillart's bridge design is perceived by some to have been deliberately artistic. [113] At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering. [109] [114]

Among famous historical figures, Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering. [108] [115]

Besigheid

Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.

Other fields

In political science, the term engineering has been borrowed for the study of the subjects of social engineering and political engineering, which deal with forming political and social structures using engineering methodology coupled with political science principles. Marketing engineering and Financial engineering have similarly borrowed the term.


Announcements

Graduate School Application Information

Office Hours with a Dean

Join Senior Associate Dean Kimani Toussaint on Mondays beginning May 10-August 2 (excluding 5/31 and 7/5) for open advising hours from 12-1 p.m. ET via Zoom. This is an opportunity to discuss any concerns or suggestions about any aspect of the School of Engineering. To make an appointment, send an email to [email protected] , briefly indicating to what the matter pertains.


January 1, 1981 – State Transportation Research Program transferred to College.

July 1982 – Donald C. Leigh appointed interim Dean.

September 1, 1983 – Ray M. Bowen assumes duties as Dean of the College.

January 1986 – Groundbreaking for the Mining & Mineral Resources Building dedicated April 8, 1988.

December 1987 – Groundbreaking for the UK Center for Manufacturing dedicated April 20, 1990.

1988 – Construction begins on the new Agricultural Engineering Building dedicated June 1990.

1988 – Name of the Department of Metallurgical Engineering and Materials Science changes to the Department of Materials Science and Engineering.

July 1, 1989 – Ray M. Bowen resigns as dean Vincent P. Drnevich named interim dean.


Stories of Engineering History

Dr. Frances Arnold, winner of the Nobel Prize for Chemistry in 2018, describes the impact of NSF support. From the early days of her career, NSF supported research that led to directed evolution.

Ms. Kimberly Bryant, who began her decades-long NSF career in the Engineering Directorate, recalls some tough transitions to new electronic systems.

Dr. Carmiña Londoño describes how the NSF Engineering Research Centers program makes societal impacts and the vision of its long-serving leader, Lynn Preston.

Dr. Andre Marshall, who was on an NSF Innovation Corps team in 2012, saw another side of the program when he came to the NSF Engineering Directorate to run I-Corps.

Dr. Bruce Kramer shares manufacturing breakthroughs that began with NSF Engineering and his work on the national strategy for advanced manufacturing.


A Brief History of IEEE

Oorsprong


Although it is association of cutting-edge members, IEEE’s roots go back to 1884 when electricity was just beginning to become a major force in society. There was one major established electrical industry, the telegraph, which—beginning in the 1840s—had come to connect the world with a communications system faster than the speed of transportation. A second major area had only barely gotten underway—electric power and light, originating in Thomas Edison’s inventions and his pioneering Pearl Street Station in New York.

Foundation of the AIEE

In the spring of 1884, a small group of individuals in the electrical professions met in New York. They formed a new organization to support professionals in their nascent field and to aid them in their efforts—the American Institute of Electrical Engineers, or AIEE for short. That October the AIEE held its first technical meeting in Philadelphia. Many early leaders, such as founding President Norvin Green of Western Union, came from telegraphy. Others, such as Thomas Edison, came from power, while Alexander Graham Bell represented the newer telephone industry. As electric power spread rapidly across the land—enhanced by innovations such as Nikola Tesla’s AC Induction Motor, long distance AC transmission and large-scale power plants, and commercialized by industries such as Westinghouse and General Electric—the AIEE became increasingly focused on electrical power and its ability to change people’s lives through the unprecedented products and services it could deliver. There was a secondary focus on wired communication, both the telegraph and the telephone. Through technical meetings, publications, and promotion of standards, the AIEE led the growth of the electrical engineering profession, while through local sections and student branches, it brought its benefits to engineers in widespread places.It also gave recognition for outstanding achievement in electrical techonologies through annual awards, begining with the Edison Medal, first presented to Elihu Thomson in 1909. The IEEE logo has a rich history and incorporates elements from the founding organizations and the merger.

Beginning in 1906, the AIEE made its home at the Engineering Societies Building at 29 West 39th St, along with the other Founding Societies.

Foundation of the IRE

A new industry arose beginning with Guglielmo Marconi’s wireless telegraphy experiments at the turn of the century. What was originally called “wireless” became radio with the electrical amplification possibilities inherent in the vacuum tubes which evolved from John Fleming’s diode and Lee de Forest’s triode. With the new industry came a new society in 1912, the Institute of Radio Engineers (IRE). The IRE was modeled on the AIEE, but was devoted to radio, and then increasingly to electronics. The IRE's headquarters was the magnificent Brokaw Mansion at 1 East 79th St. in New York City. It, too, furthered its profession by linking its members through publications, standards and conferences, and encouraging them to advance their industries by promoting innovation and excellence in the emerging new products and services.

The Societies Converge and Merge

Through the help of leadership from the two societies, and with the applications of its members’ innovations to industry, electricity wove its way—decade by decade—more deeply into every corner of life—television, radar, transistors, computers. Increasingly, the interests of the societies overlapped. Membership in both societies grew, but beginning in the 1940s, the IRE grew faster and in 1957 became the larger group. On 1 January 1963, the AIEE and the IRE merged to form the Institute of Electrical and Electronics Engineers, or IEEE. At its formation, the IEEE had 150,000 members, 140,000 of whom were in the United States. The Headquarters of the newly-formed IEEE was in the United Engineering Center, overlooking the United Nations at 345 East 47th St., New York, New York. The UEC building opened in September 1961, and the founder societies moved there from the West 39th St building, and the IRE moved there from its Brokaw Mansion headquarters to join the AIEE upon the merger in 1963. IEEE remained at the UEC until 1998, when the building was sold to developer Donald Trump, who tore it down to build luxury apartments. IEEE Merger Oral History Collection

IEEE 1963-1984

Over the decades that followed, with IEEE’s continued leadership, the societal roles of the technologies under its aegis continued to spread across the world, and reach into more and more areas of people’s lives. The professional groups and technical boards of the predecessor institutions evolved into IEEE Societies. By the time IEEE celebrated its centennial (from the year AIEE was formed) in 1984, it had 250,000 members, 50,000 of whom were outside the United States. IEEE's expansion caused the IEEE Operations Center to be built in Piscataway, New Jersey.

One of the ways IEEE preserves the history of its professions is through its Milestones in Electrical Engineering and Computing Program begun in 1983.

Here is a timeline of IEEE from 1963-1984

IEEE from 1984

Since that time, computers evolved from massive mainframes to desktop appliances to portable devices, all part of a global network connected by satellites and then by fiber optics. IEEE’s fields of interest expanded well beyond electrical/electronic engineering and computing into areas such as micro- and nanotechnology, ultrasonics, bioengineering, robotics, electronic materials, and many others. Electronics became ubiquitous—from jet cockpits to industrial robots to medical imaging. As technologies and the industries that developed them increasingly transcended national boundaries, IEEE kept pace, becoming a truly global institution which used the innovations of the practitioners it represented in order to enhance its own excellence in delivering products and services to members, industries, and the public at large.

By the early 21st Century, IEEE served its members and their interests with 38 societies 130 journals, transactions and magazines more 300 conferences annually and 900 active standards.

Publications and educational programs were delivered online, as were member services such as renewal and elections. By 2009, IEEE had 380,000 members in 160 countries, with 44.5 percent outside of the country where it was founded a century and a quarter before. Through its worldwide network of geographical units, publications, web services, and conferences, IEEE remains the world's leading professional association for the advancement of technology.


7. The Erie Canal

Between the Hudson River and Lake Erie land elevation increases by about 600 feet. Canal locks of the day (1800) could raise or lower boats about 12 feet, which meant that at least 50 locks would be required to build a canal which linked the Hudson with the Great Lakes. President Thomas Jefferson called the project “…little short of madness.” New York’s governor, Dewitt Clinton, disagreed and supported the project, which led to its detractors calling the canal “Dewitt’s Ditch” and other, less mild pejoratives. Clinton pursued the project fervently, overseeing the creation of a 360 mile long waterway across upstate New York, which linked the upper Midwest to New York City. The cities of Buffalo, New York, and Cleveland, Ohio, thrived once the canal was completed, in 1825.

The engineering demands of the canal included the removal of earth using animal power, water power (using aqueducts to redirect water flow), and gunpowder to blast through limestone. None of the canal’s planners and builders were professional engineers, instead they were mathematics instructors, judges, and amateur surveyors who learned as they went. Labor was provided by increased immigration, mostly from Ireland and the German provinces. When it was completed in 1825 the canal was considered an engineering masterpiece, one of the longest canals in the world. The Erie Canal’s heyday was relatively short, due to the development of the railroads, but it led to the growth of the port of New York, and spurred the building of competing canals in other Eastern states.


Most industrial engineer jobs require at least a bachelor's degree in engineering. Many employers, particularly those that offer engineering consulting services, also require certification as a professional engineer (PE). A master's degree is often required for promotion to management, and ongoing education and training are needed to keep up with advances in technology, materials, computer hardware and software, and government regulations. Additionally, many industrial engineers belong to the Institute of Industrial Engineers (IIE).

The BLS projects that the employment of industrial engineers will grow by 5 percent from 2012 to 2022, slower than the average for all occupations. "This occupation is versatile both in the kind of work it does and in the industries in which its expertise can be put to use," the BLS said. Having good grades from a highly rated institution should give a job seeker an advantage over the competition.


What is Engineering? | Types of Engineering

Engineering is the application of science and math to solve problems. Engineers figure out how things work and find practical uses for scientific discoveries. Scientists and inventors often get the credit for innovations that advance the human condition, but it is engineers who are instrumental in making those innovations available to the world.

In his book, "Disturbing the Universe" (Sloan Foundation, 1981), physicist Freeman Dyson wrote, "A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering."

The history of engineering is part and parcel of the history of human civilization. The Pyramids of Giza, Stonehenge, the Parthenon and the Eiffel Tower stand today as monuments to our heritage of engineering. Today's engineers not only build huge structures, such as the International Space Station, but they are also building maps to the human genome and better, smallercomputer chips.

Engineering is one of the cornerstones of STEM education, an interdisciplinary curriculum designed to motivate students to learn about science, technology, engineering and mathematics.


Engineering in History

Bruno, Leonard C. The tradition of technology: landmarks of Western technology in the collections of the Library of Congress. Washington, Library of Congress, 1995. 356 p.
Bibliography: p. 313-341.
T15.B685 1995 <SciRR>

Burstall, Aubrey Frederic. A history of technical engineering. London, Faber and Faber, 1963. 456 p.
Includes bibliographical references.
TJ15.B85 <SciRR>

Channell, David F. The history of engineering science: an annotated bibliography. New York, Garland, 1989. 311 p.
(Bibliographies of the history of science and technology, v. 16)
Z5851.C47 1989 <SciRR>

De Camp, L. Sprague. The ancient engineers. Cambridge, Mass., MIT Press, 1970, c1963. 408 p.
Bibliography: p. 385-396.
TA16.D4 1970

Finch, James Kip. Engineering and Western civilization. New York, McGraw-Hill, 1951. 397 p.
Bibliography: p. 331-374
TA15.F55

Finch, James Kip. The story of engineering. Garden City, N.Y., Doubleday, 1960. 528 p.
TA15.F57

Garrison, Ervan G. A history of engineering and technology: artful methods. 2de uitg. Boca Raton, Fla., CRC Press, 1999. 347 p.
Includes bibliographical references.
TA15.G37 1998 <SciRR>

Great engineers and pioneers in technology: From antiquity through the Industrial Revolution. Editors, Roland Turner and Steven L. Goulden, assistant editor, Barbara Sheridan. New York, St. Martin’s Press, c1981. 488 p.
Bibliography: p. 461-465.
TA139.G7 1981 vol. 1 <SciRR>

Hawkes, Nigel. Amazing achievements: a celebration of human ingenuity. San Diego, Calif., Thunder Press, c1996. 478 p.
Bibliography: p. 465.
TA15.H38 1996

Hill, Donald Routledge. A history of engineering in classical and medieval times. London, New York, Routledge, 1996. 263 p.
Bibliography: p. 248-253.
TA16.H55 1996

Kérisel, Jean. Down to earth: foundations past and present: the invisible art of the builder. Rotterdam, Boston, A.A. Balkema, 1987. 147 p.
Bibliography: p. 141-143.
TA15.K44 1987 <SciRR>

Kirby, Richard Shelton, and others. Engineering in history. New York, McGraw-Hill, 1956. 530 p.
Includes bibliographical references.
TA15.K5

Langmead, Donald, and Christine Garnaut. Encyclopedia of architectural and engineering feats.
Santa Barbara, Calif., ABC-CLIO, c2001. 388 p.
Includes bibliographical references.
NA200.L32 2001 <SciRR>

Neuburger, Albert. The technical arts and sciences of the ancients. Translated by Henry L.Brose. New York, Barnes & Noble, 1969. 518 p.
Bibliography: p. xxvii
T16.N43 1969 <SciRR>
Reprint of the 1930 edition.
Translation of Die Technik des Altertums. Engels.

Parsons, William Barclay. Engineers and engineering in the Renaissance. Cambridge, Mass., M.I.T. Press, 1968, c1939. 661 p.
Bibliography: p. 619-623.
TA18.P3 1968 <SciRR>

Rae, John, and Rudy Volti. The engineer in history. Eerwaarde red. New York, Peter Lang, 2001. 254 p. (WPI studies, v. 24)
Includes bibliographical references.
TA15.R33 2001<SciRR>

The Seventy wonders of the modern world. Edited by Neil Parkyn. New York, Thames & Hudson, 2002. 304 p.
Bibliography: p. 292-297.
TA15.S48 2002 <SciRR>

Tobin, James. Great projects: the epic story of the building of America: from the taming of the Mississippi to the invention of the Internet. New York, Free Press, c2001. 322 p.
Bibliography: p. 305-310
TA23.T63 2001 <SciRR>

Williams, Archibald. Engineering feats: great achievements simply described. London, New York, T. Nelson and Sons, 1925. 263 p.
TA15.W5

CHEMICAL, CERAMIC, MATERIALS, METALLURGICAL, MINING, PETROLEUM, AND PLASTICS ENGINEERING

Clow, Archibald, and Nan L. Clow. The chemical revolution: a contribution to social technology. Freeport, N.Y., Books for Libraries Press, 1970. 680.
Bibliography: p. 633-661.
TP18.C5 1970 <SciRR>
Reprint of the 1952 ed.

Haynes, Williams. American chemical industry. New York, Garland, 1983, c1954. 6 v.
Includes bibligraphical references.
TP23.H37 1983<SciRR>
Reprint. Originally published: New York, Van Nostrand, 1945-1954.

One hundred years of chemical engineering: from Lewis M. Norton (M.I.T. 1888) to present. Edited by Nikolaos A. Peppas. Dordrecht, Netherlands, Boston, Kluwer Academic Publishers, c1989. 414 p.
TP165.O54 1989 <SciRR>

Spence, Clark C. Mining engineers and the American West: the lace-boot brigade, 1849-1933. Moscow, Idaho, University of Idaho Press, 1993. 407 p.
Bibliography: p. 371-390.
TN23.6.S67 1993 <SciRR>
Reprint. Originally published: New Haven, Yale University Press, 1970.

CIVIL AND ENVIRONMENTAL ENGINEERING

Adam, Jean Pierre. Roman building: materials and techniques. Translated by Anthony Mathews. Bloomington, Indiana University Press, c1994. 360 p.
Bibliography: p.351-357.
TH16.A3313 1994
Translation of Construction romaine.

Berlow, Lawrence H. The reference guide to famous engineering landmarks of the world: bridges, tunnels, dams, roads, and others structures. Phoenix Ariz., Oryx Press, 1998. 250 p.
Bibliography: p. 221-228
TA15.B42 1998 TA15.B42 1998 <SciRR>

Building early America: contributions toward the history of a great industry. 1st reprint ed. The Carpenters’ Company of the City and County of Philadelphia., Charles E. Peterson, editor. Mendham, N.J., Astragal Press, 1992, c1976. 407 p.
Includes bibliographical references.
TH23.B73 <SciRR>
Reprint. Originally published: Radnor, Pa., Chilton Book Co., c1976.

Condit, Carl W. American building: materials and techniques from the first colonial settlements to the present. 2de uitg. Chicago, University of Chicago Press, 1982. 329 p. (The Chicago history of American civilization, CHAC 25)
Bibliography: p. 295-303.
TH23.C58 1982 <SciRR>

Handbook of ancient water technology. Edited by Örjan Wikander. Leiden, Boston, Brill, 2000. 741 p
Bibliography: p. 661-702.
TC16.H36 2000 <SciRR>

Historic American Buildings Survey/Historic American Engineering Record (HABS/HAER) Collections
URL: //www.loc.gov/rr/print/coll/145_habs.html
The Historic American Buildings Survey (HABS) and the Historic American Engineering Record (HAER) are collections of documentary measured drawings, photographs, and written historical and architectural information for over 31,000 structures and sites in the United States and its territories.

Pannell, J. P. M. Man the builder: an illustrated history of engineering. London, Thames and Hudson, 1977.
Bibliography: p. 251-251.
TA15.P35 1977
First ed. published in 1965 under the title: An illustrated history of civil engineering.

Smith, Norman Alfred Fisher. Man and water: a history of hydro-technology. New York, Scribner, c1975.
239 p.
Bibliography: p. 224-226.
TC15.S64 <SciRR>

Sons of Martha: a civil engineering readings in modern literature. Collected & edited by Augustin J. Fredrich. New York, American Society of Civil Engineers, c1989. 596 bl.
Bibliography: p. 595-596.
TA155.S66 1989<SciRR>

Straub, Hans. A history of civil engineering: an outline from ancient to modern times. English translation by E. Rockwell. London, L. Hill, 1952. 258 p.
TH15.S752 <SciRR>

Upton, Neil. An illustrated history of civil engineering. London, Heinemann, 1975. 192 p.
Bibliography: p. 184.
TA15.U67

Wisley, William H. The American Civil Engineer 1852-2002: the history, traditions, and development of the American Society of Civil Engineers. Reston, Va., American Society of Civil Engineers, 2002. 235 p.
Includes bibliographical references.
TA1.W83 2002<SciRR>

Wright, G. R. H. Ancient building technology. Volume 1. Historical Background. Leiden, Boston, Brill, 2000. 155 p. (Technology and change in history, v. 4)
Includes bibliographical references.
TH16.W76 2000 <SciRR>

ELECTRICAL, ELECTRONICS, NUCLEAR, OPTCIAL, SOFTWARE, AND HARDWARE ENGINEERING

Bray, John. The communications miracle: the telecommunication pioneers from Morse to the information superhighway. New York, Plenum Press, c1995. 379 p.
Includes bibliographical references
TK139.B73 1995 <SciRR>

Cortada, James W. The computer in the United States: from laboratory to market, 1930 to 1960. Armonk, N.Y., M. E. Sharpe, c1993. 183 bl.
Bibliography: p. 141-173.
TK7885.A5C67 1993 <SciRR>

Dunsheath, Percy. A history of electrical power engineering. Cambridge, Mass., M.I.T. Press, 1969, c1962. 368 p.
Includes bibliographical references.
TK15.D8 1969 <SciRR>

Finn, Bernard S. The history of electrical technology: an annotated bibliography. New York, Garland Pub., 1991. 342 p. (Bibliographies of the history of science and technology, v. 18)
Z5832.F56 1991 <SciRR>

A History of engineering and science in the Bell System. Prepared by members of the technical staff, Bell Telephone Laboratories, M. D. Fagen, editor. New York, The Laboratories, 1975-c1985. 7 v.
TK6023.H57 1975 <SciRR>

Lukoff, Herman. From dits to bits: a personal history of the electronic computer. Portland, Or., Robotics Press, c1979. 219 p.
Bibliography: p. 210-211.
TK7885.22.L84A33 <SciRR>

McMahon, A. Michal. The making of a profession: a century of electrical engineering in America. New York, Institute of Electrical and Electronics Engineers, c1984. 304 p.
Includes bibliographical references.
TK23.M39 1984 <SciRR>

Nebeker, Frederik. Sparks of genius: portraits of electrical engineering excellence. New York, Institute of Electrical and Electronics Engineers, c1994. 268 p.
Includes bibliographical references.
TK139.N42 1993 <SciRR>

Ryder, John Douglas, and Donald G. Fink. Engineers & electrons: a century of electrical progress. New York, IEEE Press, c1984. 251 p.
Includes bibliographical references.
TK23.R9 1984 <SciRR>

MECHANICAL, INDUSTRIAL, PACKAGING, ROBOTICS, AND QUALITY CONTROL ENGINEERING

Landmarks in mechanical engineering. ASME International History and Heritage. West Lafayette, Ind., Purdue University Press, c1997. 364 bl.
Bibliography: p. 351.
TJ23.L35 1997 <SciRR>

Institution of Mechanical Engineers, London. Engineering heritage. London, Heinemann, on behalf of the Institution of Mechanical Engineers, 1964, c1963-1966. 2 v.
TJ15.I5 <SciRR>


Kyk die video: 12. Међународно саветовање на темуРИЗИК И БЕЗБЕДОНОСНИ ИНЖЕЊЕРИНГ